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The method of Lie group transformations is used to derive all group-invariant 
similarity solutions of the unsteady two-dimensional laminar boundary-layer 
equations. A new method of nonlinear superposition is then used to generate further 
similarity solutions from a group-invariant solution. Our results are shown to include 
all the existing solutions as special cases. A detailed analysis is given to several 
classes of solutions which are also solutions to the full Navier-Stokes equations and 
which exhibit flow separation. 

1. Introduction 
Most existing exact solutions in fluid mechanics are similarity solutions in the 

sense that the number of independent variables is reduced by one or more. They may 
be derived by dimensional arguments, by the group-theoretic method, or by the ad 
hoc method of free parameters. Among them the group-theoretic method, which 
includes the dimensional analysis as a special case, is the most systematic in 
generating similarity solutions. 

For the steady two-dimensional laminar boundary-layer equations, there exist two 
classes of similarity solutions which can be completely characterized by the external 
inviscid flow as follows : 

Class (a) The external inviscid flow ue(x) = Axn, where A is a constant. This leads 
to the Falkner-Skan (1931) solution which includes, as special cases, the famous 
Blasius (1908) solution when n = 0 and the Hiemenz (191 1) stagnation-point flow 
when n = 1 ; the latter is also an exact solution to the full Navier-Stokes equations. 

Class ( b )  The external flow u,(x) = A ekz. This may also be regarded as the limiting 
case of Class (a)  as n + 03. 

For the unsteady two-dimensional laminar boundary-layer equations, only three 
similarity solutions are known to date. (i) Rayleigh (1911) shear flow: This is 
generated by starting an infinite flat plate from rest and moving in its own plane with 
a constant velocity. It is also a solution to the full Navier-Stokes equations. (ii) 
Glauert (1956) and Rott (1956) flow : The flow results from a transverse oscillation 
of an infinite flat plate about its own plane normal to a uniform oncoming stream. 
It, too, is also a solution to the Navier-Stokes equations. (iii) Williams & Johnson 
(1974) flow : This class of similarity solutions was obtained by using a free-parameter 
method to reduce the number of independent variables of the governing equations 
from three to two. The resulting equations were then solved numerically to study the 
unsteady separation phenomenon of the unsteady linearly retarded flow. It should, 
however, be pointed out that the boundary-layer equations are not valid when flow 
separation or reversal occurs and their solution cannot really be used to study the 
behaviour of flow separation. 

In  this paper we first use the method of Lie group transformations (see e.g. 
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Ovsiannikov 1982) to derive all possible group-invariant similarity solutions to the 
problem of unsteady two-dimensional boundary-layer flow of an incompressible 
fluid. A new method based on nonlinear superposition is then used to generate 
further similarity solutions which are not group-invariant. It is shown that our 
solutions include all the existing solutions as special cases, as well as many new ones. 
A detailed analysis will be given to those solutions that are also solutions to the full 
Navier-Stokes equations and that exhibit flow separation. 

We note that steady and unsteady separated flows have been a topic of intensive 
study over the past three decades (see e.g. Hui & Tobak 1989 and the references 
therein), and that reliable theoretical analysis, numerical computations and proper 
interpretation of experimental observations all depend crucially on a correct 
understanding of the behaviour of flow separation. In  this regard, exact analytical 
solutions describing separated flows are especially valuable. 

We shall begin by formulating the problem in $ 2  and then outlining the group- 
theoretic technique in $3.  All the group-invariant solutions to the boundary-layer 
equations are given and classified in $4. In  particular, a class of solutions representing 
the unsteady separated stagnation-point flow will be studied in detail in $ 5 .  Finally, 
those similarity solutions that are obtained by using the method of nonlinear 
superposition will be given in $6. 

-+- = 0, ax ay 
au au au au au a2u -+u-++- = e+U,e+- 
at ax ay at ax ay2’ 

= 0. au, 

2. Formulation 
Consider an unsteady two-dimensional viscous flow of an incompressible fluid over 

a flat plate with the latter taken as y = 0 in the Cartesian (x,y)-coordinates. The 
corresponding components of velocity are denoted respectively by u and v, the 
pressure, density and kinematic viscosity of the fluid by p ,  p and v, and the time by 
t. The two-dimensional unsteady Navier-Stokes equations are 

au av 
ax ay 
-+- = 0, I 

For simplicity we set p = 1 and v = 1 ; this amounts to choosing suitable units for 
length and time. For flow of high Reynolds number, the corresponding unsteady 
laminar boundary-layer equations are 

If the flat plate is stationary the boundary conditions are 

1 u(x ,  0, t )  = v(x, 0, t) = 0, 

u(X,y, t )=ue(x, t )  as y z y 3 . j  
(3) 
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The external inviscid flow u,(x , t )  in (2) is usually obtained from inviscid flow 
calculations and is related to the pressure p by 

X = [2C,+C,]x+g(t), 

Y = C,y+h(x , t ) ,  

@e = c,ue+g’(t), 

% = C,u+g’(t), 

In  addition to the boundary conditions, an initial condition on u, i.e. u ( x ,  y,  0), must 
be prescribed in order to form a well-posed problem. In searching for similarity 
solutions, the initial condition cannot be prescribed but, instead, is determined (see 
§3). 

1 

3. Application of Lie-group method 
3.1. Group-theoretie method 

The essence of the group-theoretic method (Ovsiannikov 1982) is to find a one- 
parameter Lie group of transformations which leave the system (2) invariant. This 
can be achieved by solving the determining equations for the differential operator of 
the group. Even though the system (2) is nonlinear, the determining equations are 
always linear and are thus much easier to solve. The group of transformations is then 
further narrowed down to a sub-group under which the boundary conditions (3) are 
also invariant. The invariant solutions then satisfy a system of differential equations 
whose number of independent variables is one less than that of the original system, 
as ensured by the group theory. By repeating the same procedure, one can further 
reduce the system of partial differential equations of two independent variables to a 
system of ordinary differential equations. 

In  applying the group-theoretic method to system (2), we allow the external flow 
U J X ,  t )  and the initial condition u ( x ,  y, 0) to  be determined so that similarity solutions 
exist. It turns out that similarity solutions exist only for certain types of external 
flow u, and certain types of initial conditions as seen in $4. 

3.2. General solution to the differential operator 
In  order to find all the group-invariant similarity solutions to (2), we first find the 
most general differential operator 9 of the transformation group of the form 

a a  a a a a 
9 = Y-+X-++Y-+%,-+%!-+V- 

at ax ay au, au av,  (5) 

such that it leaves system (2 )  invariant. The invariance conditions of (2) under (5) 
yield fifty-nine determining equations for the coefficients F, . . . , V as functions of t ,  
x ,  y, u,, u and v. The most general solution to these determining equations is found 
by using a symbolic package written in Maple (Char et al. 1988) to be 

Y- = -c,v+-, 
Dh Dt J 

18 FLM 216 
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where Ci, i = 1,2,3,  are arbitrary constants, g ( t )  and h(x, t )  are arbitrary functions, 
and D/Dt denotes the material derivative ; in particular 

V, x + exp (sV,) x, \ 
v, t - t t + € ,  

(x, u e ,  u)  + e"(zi ue, u), vz 
V, ( t  , x, y , v) + ( e2?, eZax, e'y , e-'v), 

vg (x, u e ,  u) + (x + E g ( t )  , u e  + d f t )  9 u + d ( t ) )  > 

Dh _ -  ah ah 
- -+u- Dt at ax* 

> 

When comparing with the solution of Ovsiannikov (1982), we find that his solution 
misses the x-dependence in the function h and therefore is not the most general 
solution to the determining equations. The geometric interpretation of the x- 
dependence of h will be given in the next subsection. 

3.3. Classijication of the symmetry groups 
The Lie algebra of the symmetry group of (2) is spanned by the three vector fields: 

v, = a,, 
v, = xaz + ue a,., + ua,, 

v, = 2ta, + 2xa, + yau - vaa,, 
and the infinite-dimensional subalgebras 

Dh 
Dt 

v, = h(x, t) au +-aa,. 

(7) 

(9) 

v, (y,v)+ y+sh(s,t),v+E- 2). J ( 
As seen from the vector field V, in (9), the system (2) is invariant under translations 

in time t ,  hence the reference point in time may be chosen arbitrarily. The vector field 
V, generates a uniform scaling transformation on x, u, and u, whereas the vector field 
V, generates a non-uniform scaling transformation on t, x, y and v, e.g. contracting 
v while expanding t, x, and y. The vector field V,  relates two coordinate systems, one 
of which is moving away from the other horizontally with a velocity xh(t) = eg'(t). 
Thus invariance under V,  means invariance of solutions of (2) under an arbitrary 
time-dependent translation motion xo(t) in the s-direction. Finally, the vector field 
V, relates a time-dependent curvilinear coordinate system defined by (t, 2, g) = (t, x, 
y+ yo(x, t ) ) ,  where yo(x, t) = sh(x, t ) ,  to the usual orthogonal ( t ,  x, y) coordinate 
system. The invariance of the solution of (2) under this transformation will be used 
later to study flow past a deforming solid surface yo(x, t ) .  
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3.4. Flows related by symmetry groups 

According to (9), if u, = fl(x, t ) ,  u = f,(x, y, t )  and v = f,(x, y, t )  constitute a solution to 
(2), then the most general form of the solution that is generated by the transformation 
group (5) and (6) is 

1 
u e  = -V1(X, T )  +xh(T)l ,  

k2 

where T = ki( t - t0) ,  X = k , k ~ [ x - ~ , ( t ) ] ,  Y = k 3 [ y - y o ( ~ , t ) ] ,  (11) 

with k, being constants and xo(t) ,  yo(", t )  being arbitrary functions. 
From the above analysis, we arrive a t  the following conclusions about boundary- 

layer flows which are related by symmetry groups : 
( a )  A solution of the boundary-layer equations (2) for a flow past a stationary flat 

plate can be used to describe the flow past a flat plate moving arbitrarily in its own plane 
with a suitable change of external flow. Suppose u,, u and v constitute a solution to the 
stationary flat-plate problem, then by specifying k, = k, = 1 and yo = 0 in (10) the 
resulting solution tiel u and B describes the flow past a flat plate moving at a velocity 
xh(t). The external flows u, and u, of the two problems are related by 

(12) ue(x, t )  = Ue(X-zo(t), t)+Xh(t). 

Now, since the motion of the plate can be absorbed into the external flow, we shall 
use the body-fixed coordinate system in what follows without loss of generality, as 
i t  has the advantage over the observer-fixed coordinate system in reducing the 
number of free functions specifying the problem. 

(b)  The problem of Jinding the flow past a deforming solid surface y = yo(", t )  with a 
given external flow u,(x, t )  can be solved by considering the boundary-layer flow past a 
stationary flat plate with the same given external flow. Since a fluid particle on the 
surface remains there for all time, we have 

or 

If the solid surface is deforming in such a way that its particles have no horizontal 
motion, then the no-slip boundary condition demands that the fluid particles on the 
surface also have the same vertical motion and no horizontal motion. Therefore 

(141 

in addition to (13). Now if u, = fi(x, t ) , u  = f ,(z,y,t)  and v = f3(x,y,t) represent the 
boundary-layer flow past a stationary flat plate, then by specifying k, = k, = 1 and 
xo = 0 in (lo), the resulting solution a, B represents the flow past the deforming solid 
surface yo(", t )  with the same external flow u, = fl(x, t ) .  

Therefore, without loss of generality we only need to find all the group-invariant 

4x3 yo, t )  = 0 

18-2 
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similarity solutions of (2) under the condition that the plate is stationary and flat, 
and this is done in $4.  

4. Group-invariant solutions 
4.1. Group invariants and boundary conditions 

With the general solution of the operator of the symmetry group given by (6), all 
group-invariant solutions of ( 2 )  and (3) can be found by solving systems of partial 
differential equations involving only two independent variables. This is achieved by 
solving the characteristic equations to find all the invariants of the group, which are 
then used as new variables. 

For our case, the characteristic equations are 

dt dx d y  d u e - d u - d v  -- _ -  _ -  - _ -  _ - -  
F x Y %!e a-7' 

where F,  %, Y, %!e, %! and V are given in (6). For the boundary conditions (3) to be 
invariant, we must have h = 0 and g = constant. Equations (15) are then reduced to 

(16) 
dv --=-- -- =- dy - due du dx - - dt 

2C3t+Cl (2C,+C,)x+g c 3 y  c2ue c,u -C,v' 

To illustrate how to solve the above characteristic equations to find the five 
invariants, let us assume that C, i 0. With a suitable rescaling and renaming of the 
free parameters, (16) takes the following form : 

Unless otherwise stated, we shall set to = 0. The first invariant X ( x ,  t )  then 
corresponds to the integration constant of the following equation : 

or 
1 (x-xo) t-(l+*) when q =+ - 1 ,  x= ., 
\x-glnt when q = - 1 ,  

where x,, is a constant which will be set equal to zero, unless otherwise stated. 
Similarly, for the second invariant Y we solve 

dy=- dt 
y 2t' 

to obtain y,Y 
tt 
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Following the same method as before, we obtain three more invariants 

Y Y = 7 ,  
t E  

u, = tPU,(X), 

u = tPU(X, Y ) ,  

V ( X ,  Y )  v=- 

> 

or X = x-qlnt, q an arbitrary constant,\ 

The boundary conditions (3) then require 

1 U ( X ,  0) = V ( X ,  0) = 0, 

U ( X ,  Y )  = u,(x) as Y+ w.j  

The governing differential equations for U ,  V and U, can be easily obtained by 
substituting (20) and (21) into (2); they are given in (27) and (28). 

In  this way, all possible forms of the invariants together with the corresponding 
governing differential equations are classified into six distinct classes, which are 
given in the next subsection. 
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Class 11: 

av u+- = 0, 
a Y  

--+V-+V au au = - + U z , + 7 ,  aue azu 
at ay at a Y  

U(t,O) = V( t ,O)  = 0, 

U ( t , y )  = Ue(t) as y+co. 

Class I11 
x = x - q t ,  

Y=y, 
u, = U,(X), 
u = U ( X ,  Y ) ,  

21 = V ( X ,  Y ) ,  

au av 
ax ay 
-+- = 0, 

au au au, a2u 
( U - q ) - +  v- = (Ue-q ) -+ - ,  ax ay ax ay2 

U ( X ,  0) = V ( X ,  0) = 0, 

U ( X ,  Y )  = Ue(X)  as Y-+ 00. 

Class I V :  

au au a u e  a2u ( U - q X ) - + v - + q u  = (U,-qX)-+qUe+-,  ax a Y  ax ay2 

U ( X ,  0) = V ( X ,  0) = 0, 

U ( X ,  Y )  = U e ( X )  as Y+ co. 
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Class V:  

X = z-qlnt, 

au av -+- = 0, ax ay 

a u e  a2u 
( U - q ) - +  v-- --u= ( U e - q ) - - U e + - ,  ax ( 3;; ax ay2 

U(X,O) = V(X’0) = 0, 

U ( X ,  Y) = Ue(X) as Y-t 03. 

Class V I :  

x = t-l-*x, q * - 1, 

au av 
ax ay 
-+- = 0, 

U(X,  Y )  = U J X )  as Y +  co. 

Here q is an arbitrary constant. 
From (23)-(28) we observe that 
( a )  Class I is,an unsteady shear flow. 
(b)  The solutions of Class I and I1 also satisfy the full Navier-Stokes equations, as 

is easily verified by substituting them into (1).  
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(c) The steady boundary-layer equations can be obtained from Class I11 or Class 
IV by setting q = 0. 

( d )  The solutions of Class V exhibit a logarithmic type behaviour in the similarity 
variable X ,  but this type of logarithmic behaviour cannot be found in the 
corresponding steady flow case. It is interesting to note that such logarithmic 
behaviour also occurs in the similarity solutions to steady hypersonic flow past 
slender bodies (Hui 1971) or, equivalently, one-dimensional unsteady flow of a 
perfect gas. 

( e )  The Class VI  solution corresponds to the most general power-law case. 
The similarity solution of Williams & Johnson (1974) is for the case where the plate 

is stationary and the external flow is u,(x, t )  = u,(E), with = (x+Kt)/(l -Bt ) ,  K and 
B being constant. Their solution can be obtained from Class VI by setting q = 0, and 
replacing t with t -  1/B and x with x+K/B. This amounts to taking to = 1/B in (17) 
and xo = -K/B in (is), and results in 

Although their solution gives rise to flow separation, it does not satisfy the 
Navier-Stokes equations (1).  Therefore, as noted earlier, it  is not valid near the point 
of separation and cannot be used to study flow separation behaviour. 

4.3. Further reduction to ordinary differential equations and exact solutions 
By using group-theoretic method once again, each of the six different systems of 
partial differential equations of two independent variables given in $4.2 can be 
further reduced to systems of ordinary differential equations (ODEs) which can then 
be solved easily. The results of the reduction are listed below : 

Class I :  The governing equation (23) for this class is the heat equation and the 
similarity solutions for the heat equation are well known (see e.g. Olver 1986). 

Class 11: Only in two cases can system (24) be reduced to ODEs. The first case 
corresponds to U, = A > 0, resulting in 

u, = Ax, 
u = A x , ( A $ / ) ,  

v = -AV(Aiy), 
where f satisfies 

f”’+ff”+ 1 -I2 = 0, f (0 )  = f ( O )  = 0, f ( C 0 )  = 1.  (30) 

This is the Hiemenz (1911) stagnation-point flow solution. The second case 
corresponds to U, = A / t ,  resulting in 

I A 
t 

u, = -x, 

u = A Txf(;)> 
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where f (  Y )  satisfies 

f”’+(Af+$Y)f”+(l-Af)f+A-l = O ,  f ( O ) = f ( O ) = O ,  j ” ( 0 0 ) =  1.  (32) 

This solution will be referred to as the wnsteady separated stagnation-point flow 
solution (USSP) and will be studied in detail in the next section. 

Class 111: In order to obtain non-trivial solutions the constant q must be set to 
zero, resulting in steady boundary-layer flow. All the existing group-invariant steady 
boundary-layer flow solutions have been listed in the introduction, and no new 
group-invariant solutions can be found. 

Class IV  : The system (26) can be reduced to ODEs in the following two cases only. 
The first case corresponds to U,(X) = A X ,  i.e. u, =Ax, and this results in the 
Hiemenz stagnation-point flow solution. The second case corresponds to U, = A and 
yields an exact analytic solution 

(33) I u, = Aexp (k4t) ,  

u = A exp (k4t) [I - exp ( - k2y)], 
2, = 0, 

where k is an arbitrary constant. It is noted that (33) also satisfies the full 
Navier-Stokes equations (1) with the pressure p = -k*u,z+p, ,  as can be easily 
verified. 

Class V: For (27) to reduce to ODEs the constant q must be set equal to zero. There 
are again two distinct cases. The first one corresponds to U, = AX (or u, = Ax/t)  and 
yields the USSP flow solution (31) and (32). The second case corresponds to U, = A  
and yields an exact analytic solution 

A 
u, = - 

t 

AY 

2, = 0, I 2, = 0, 

(34) 

where C is an arbitrary constant. The quantity u/u, is plotted in figure 1 for the cases 
C = - 1,0 and 1. It can be shown (Appendix A) that this solution possesses 
overshooting behaviour for all values of C, i.e. u > u, for some values of Y > 0. 
Furthermore, reverse flow will also occur when C < 0. 

We note that even though reverse flow and overshooting behaviour occur, this 
solution (34) remains valid as it satisfies the Navier-Stokes equations ( 1 )  with the 
pressure p = (A/t2)X+po. 

Class VI :  Again, there exist two cases for which (28) reduces to ODEs. The first 
case corresponds to U, = AX (or u, = A x / t )  and yields the USSP flow solution (31) 
and (32). The second case is a family of unsteady shear flows as given by 

U, = Btq, 

v = o ,  
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2 7  C = l  

0 I , Y  
5 10 

c=-1 -0.5 - 
FIQURE 1. u/u, vs. Y .  

where f( Y )  satisfies 
Y 
2 

f”+- f -q f+q = 0, f(0) = 0, f(c0) = 1. 

When q is a positive integer, (36) has an anlytic solution of the form 

where 

with I a, = 1, 

i q-i i = 0, ...,q- 1. 
a,,, = 2 ( i + l )  (2i+ l p ,  

(38) 

(39) 

The convergence of the integrals in (37) and (38) is guaranteed because a( > 0 for 
i = 0, .  .., q as seen from (39). The special case q = 0 yields the Rayleigh (1911) 
solution. As a final remark, the solution defined by (35) and (36) also satisfies the 
Navier-Stokes equations with the pressure 

p = p ,  - qBtq-lX. 

5. An unsteady separated stagnation-point flow 
The following solution, which satisfies both the boundary-layer equations (2) and 

the Navier-Stokes equations (1 ), represents an unsteady separated stagnation point 

I A 
t 

flow (USSP): 
u, = -2, 

u = A -XfQ), 

t 

2, = --f(”,) A 
tt z 

p = -[ A(A--1) 2t2 x2+-+-+T+p01, Ayf A2f2 Af J 2t: 2t 

where f ( Y )  satisfies the same equation as ( 3 2 ) .  
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5.0 1 Attached flow solution 

0 2.5 5.0 

Reverse flow solution 

0 r Y  
10 

-2 J 
FIGURE 2. Attached- and reverse-flow solutions t.0 (41) for USSP when A = 1 .  

For the special case A = 1,  these become 

f”+(f+p)y+(l-f)f = 0, f (0 )  = f ( O )  = 0, f (c0)  = 1,  (411 

which closely resembles the Hiemenz (191 1) steady stagnation-point flow solution 
(29) and (30). By comparing the USSP flow equation (41) with (30), we find that the 
unsteady effect arises from the terms aYj” +f - 1 in (41), as the latter may be written 

f’” +ff” + 1 - p 2  + +Yf” +p - 1 = 0. -- 
Hiemenz unsteady effect 

It is interesting to note that in contrast to (30), the solution to (41) is not unique. The 
results of numerical computations show that two solutions to (41) exist, one 
representing an attached flow, the other a reverse flow (figure 2). 

The stream function Y of the flow (40) is given by 

For the reverse-flow case, the streamline patterns are plotted in figure 3 for the case 
A = 1 and for time t = 1,2,3,  where the existence of a saddle point is noted. This 
clearly represents a separated flow (Hui & Tobak 1989) with Y = 0 being the 
separation streamline. 

When A + 1, the situation is more complicated. For all values of A tested, there 
exist a t  least two solutions of (32). For some values of A, e.g. A = 2, five different 
solutions off exist. The corresponding streamlines for the case A = t and A = 2 are 
given in figures 4 and 5. 

From (40), we deduce that the surface pressure at  y = 0 reaches an extremum a t  
the origin. It is a minimum if A(A - 1) < 0 and a maximum if A(A - 1) > 0, as is 
easily seen from applax of (40). The results of numerical experiments on (32) for 
various values ofA suggest that whenever there is flow separation, there is a pressure 
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- 20 0 20 

20 

10 

0 " I  

- 20 0 20 

- 20 0 20 

FIGURE 3. Streamline patterns for USSP when A = 1 .  (a) t = 1 ,  ( b )  t = 2, ( c )  t = 3. 

minimum on the body surface, but the converse is not generally true. This is in 
agreement with the theoretical prediction of M. Tobak (private communication). On 
the other hand, flow reattachment will occur when there is a pressure maximum. In 
this regard, the case A = 1 can be thought of as being the borderline case between the 
solutions that exhibit flow separation (the case where A < 1) and those that exhibit 
only flow reattachment (the case where A > 1). 
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- 5  0 5 

51z/; 10 

0 0 
5 - 5  5 

FIQURE 4. The solutions for f when A = t together with the corresponding streamlines. 

6. Further similarity solutions 
In this section, we derive further similarity solutions from some of the basic group- 

invariant solutions obtained in the last section. We first use the Hiemenz (1911) 
stagnation-point flow solution as the basic solution to illustrate the method. The 
method will then be applied to the USSP flow solution to generate further solutions. 

6.1. Generalized Hiemenz stagnation-point $ow 
We look for solutions of the boundary-layer equations (2) and boundary conditions 
(3) of the form 

u = A#(Y)+Q(t ,  Y ) ,  Y = Aiy ,  (42) 

u, = As+S(t) ,  

(43) with Q(t ,  0) = 0, 52(t, co) = S(t) ,  

where f is the Hiemenz solution (30). We attempt to determine the functions 52 and 
S such that (2) reduce to ordinary differential equations. 

I v = -At f (Y) ,  

k 

Let S ( t )  = C BnFn(t) ,  (44) 
n-0 

where the Bn are non-zero constants and the Fn are linearly independent functions of 
time t .  Correspondingly, let 

k 

where the functions gfl are to be determined subject to the conditions that gn(0) = 
0 and g n ( c o )  = 1, n = 0, ..., k, as required by (43). 

Substituting (42)-(45) into (2), we obtain 

k 

C [Bn Fn(gn - 1) +ABn Fn Vgn -fL - 1 -&)I = 0. (46) 
fl-0 
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f”(0) = 0.351 341 4 
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-2 

f’(0) = 0.4670639 
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- 5  0 5 
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FIGURE 5 .  The solutions for f when A = 2 together with the corresponding streamlines. 

Let us assume that for all F,, n = 0, ..., k, there exist constants C,,, i = 0, ..., k, such 
t,hat 

k 

F i  = C C,&. (47) 
2-0 

In Appendix B all linearly independent functions F, satisfying (47) are found to be 
a suitable linear combination of the following functions 
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where A is a parameter. As an illustration, the external flow of the Glauert (1956) and 
Rott (1956) solution, when given in the body-fixed coordinates, is 

(49) u, = Ax + B, exp (iwt) 

It corresponds to a subcase of ours when F, = yo(t ; iw), k = 0 and Coo = iw. 
Substituting (47) into (46), we obtain 

AB, F, = 0. 1 Cjn(gj-  1) Bi 

n=o 5-0 ABn 

Since the F, are linearly independent, all the coefficients of Fn in (50) vanish, and we 
have 

together with the boundary conditions 

gn(0) = 0, gn(m) = 1. (52) 
Equation (51) shows that the g n  are governed by a system of ODES and that the 

constants Cjn determine the nature of the interactions of the shear flows g,. Therefore 
for a set of linearly independent functions Fn that satisfy (47), equations (42)-(45), 
(51) and (52) constitute a similarity solution to the boundary-layer equations (2) 
with boundary conditions (3). It can be verified that this solution also satisfies the 
Navier-Stokes equations (1) with the pressure 

p = - ( $ 4 ’ ~ ~  + SAX + S’Z + gf ’ + Af + P o ) .  

The stream function Y for the flow given by (42) is 

IOY Q(4 7) d7 
Y = A ~ x +  A1 

For a particular streamline Y = Yo, we have 

Y 

Atyo- c W , 7 ) d 7  

(53) 

(54) 

Sincef”(0) is positive for the Hiemenz solution and v = -A9 < 0,  the flow is always 
reattached and the point of reattachment, where au/i3y = 0, is given by 

with Y = 0 being the reattaching streamline. From (53), we know that a t  y = 0, the 

The results for this class of flow where the pressure attains a maximum on the body- 
surface and the flow is always reattached are in agreement with the theoretical 
predictions of Tobak. 
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u, = -+S(t), t 

Ax  
?A = -$Y)+Q(t, Y ) ,  

A 
2, = -- lf(Q 

1 

where Y = y/&, f satisfies (32), and 

Q(t,  0 )  = 0,  Q ( t ,  00)  = S(t) .  (59) 

We shall determine classes of functions Q ( t , Y )  such that the boundary-layer 
equations (2) reduce to a system of ordinary differential equations. 

k 

Let S(t)  = C BnFn(t), (60) 
n-0 

where the B, are non-zero constants and the F,(t) are linearly independent functions 
of time t .  Correspondingly, let 

k 

where the functions gn are to  be determined subject to the conditions that g,(O) = 
0 and qn(m) = 1, as required by (59). 

Substituting (58) ,  (60) and (61) into (2) and (3), we obtain 

~ ~ - o [ B n F , [ g ~ +  (Af+;Y)g:,-Afg, +A]-B,(g,- l ) tFL]  = 0. (62) 

Suppose that for all Fn, there exist constants Cni,i = 0,  ..., k, such that 

k 
tFn = 2 Cni Fi, 

( -0  

then (62) becomes 

Since the F, are linearly independent, we have 

g; + (Af+ ;Y) g:, - Afg, +A = X Bi Cin(9i - 1)  
i-0 Bn 

The boundary conditions for the gn are 

g n ( O )  = 0,  g n ( a )  = 1. 

If we let T = lnt, then 
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Therefore from the discussion of Appendix B, the existence of the F,, is guaranteed 
and the F, must be in the form 

4 = I: aijkexp (hk7)7’ = C aigk tAk I d  ( t ) .  
1, k i, k 

It is clear from (64) that the constants C,, determine how the functions g, interact 
with each other. Therefore, for a set of linearly independent functions Fa which 
satisfy (63), equations (58), (60), (61), (64)-(65) constitute a similarity solution to the 
boundary-layer equations (2) and (3). It can be easily verified that this solution also 
satisfies the Navier-Stokes equations (1) with the pressure 

1 A(A - 1) SA A A2f2 Aj” x2+ x’z + --2 + 7 Y f +  y+ T + P O  . 
P = -[ 2t2 t 2t- 

There are several important features of this family of solutions, namely : 
( a )  When A = 0, it represents a class of shear flow characterized by the functions 

( b )  When B, = 0, it reduces to the USSP flow solution. 
( c )  The case AB, + 0 is the superposition of the flows in ( a )  and ( b )  in which the 

shear flows gi are affected by the USSP flow f via (64), but the shear flows do not 
affect the USSP flow. 

Si . 

The stream function Y for the flow given by (58) is 

For a particular streamline !P= Yo, we have 

ti !Po - t Jr a( t , q ) dy 
= Y (  Yo, t ,  Y ) .  

Af ( Y )  
2 =  

Therefore if Y = Yo denotes the separation (or reattachment) streamline a t  time t 
with x, (finite) being the point of separation (or reattachment), we must have 

x, = lim Y (  Yo, t ,  Y ) .  
Y-0 

Since f(0) = j ” ( O )  = G(t,O) = 0, it is clear that Y = 0 is the only separation 
(reattachment) streamline with the position of separation (reattachment) given by 

Since v = - A f / t i  the flow is separated when f”(0) < 0 (i.e. v > 0 when y is 
sufficiently small) and reattached when f”(0) > 0 (i.e. v < 0 when y is sufficiently 
small). In  view of the above analysis, the USSP flow determines the principal 
behaviour of the flow represented by (58). 

From (66), we know that the surface pressure at  y = 0 reaches an extremum a t  

t ( tS  +AS)  
xo = - 

A ( A - 1 )  ’ 

which is dependent on the external flow. It is a minimum when A(A - 1) < 0 and a 
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FIGURE 6. Streamline patterns for s(t) = t-* and A = 0.5,2 at t = 1. 

maximum when A ( A  - 1 )  > 0 and this conclusion holds regardless of the shear flow 
8. We therefore conclude from the study of the USSP flow that if the flow (58) is 
separated there must be a pressure minimum on the body surface. On the other hand. 
flow reattachment will occur if and only if there is a pressure maximum. 

Typical streamline patterns showing flow separation ( A  = t )  and reattachment 
( A  = 2) are given in figure 6 in which s(t) = t P  was used. 

7. Conclusions 
The Lie-group method of symmetry has proved to be a very powerful tool in 

generating all group-invariant similarity solutions representing two-dimensional 
unsteady boundary-layer flow over a plate. These solutions are classified into six 
distinct classes according to their functional forms. More similarity solutions are also 
generated by using a method of nonlinear superposition of suitably chosen shear 
flows. We have shown that our solutions include all the previously known solutions 
as special cases. In  addition, many new solutions are found which are also solutions 
to the full Navier-Stokes equations. Thus these new solutions remain valid even 
when flow separation or reversal occurs. Many of our new solutions represent 
separated flows and they have been used in studying the relationship between flow 
separation (or reattachment) and the pressure extremum on the body surface. 
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Appendix A 
In  this Appendix, we show that the flow given by (34) possesses overshooting 

behaviour for all values of C, i,e. u > u, for some values of Y > 0. We also show that 
reverse flow will occur when C < 0. 

To show the overshooting behaviour, let us consider the behaviour of the function 

U 
F = - = Y exp (-4y2) 

u e  

near its maximum by examining its derivative 

-= ( l -+P)exp(- ;P)  
dF 
dY 

At a stationary point dF/dY = 0, hence 

and the corresponding value of F is 
v?. 

p = L  
P - 2 '  

We now show that for any given constant C,  there exists a Y > 0 such that (A 1) is 
satisfied. To see this, we note that, from (A l),  

Accordingly BC1BY-t - 00 as Y-t + 00, so we have C-t -  co as Y-t + 00. Moreover, 
C + + co as Y $ 4 2  as seen from (A 1). Therefore (A 1) defines a map C which maps the 
interval ( 4 2 ,  co) to the entire real line. So for any given C,  there exists a t  least one 
Y > 4 2  satisfying (A 1). We therefore conclude from (A 2) that for any given value 
of C ,  there exists a Y such that F = u/u, > 1, i.e. the solution (34) exhibits an 
overshooting behaviour for any value of C. 

Furthermore, if C < 0,  there exists a Y > 0 such that 

G'+rexp(S2)df  0 < 0, 

and so u < 0. This is to say that reverse flow will always occur whenever C < 0. 

Appendix B 

k, that satisfy 
In this Appendix, we classify all the linearly independent functions F,(t), = 0, . . . , 

k: 

Fh = Cnil$. 

When written in matrix notation, (B 1)  becomes 

i -0  
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where F =  [ x"] 
Fn 

and C = [C,]. Suppose J is the Jordan matrix of C, then there exists an invertible 
matrix P such that C = PJP-'. If Y satisfies Y' = JY, then it can be verified that 
F = PY is a solution to (B 2). Since P is invertible, the 4 are linearly independent if 
and only if the are linearly independent. Let J be 

where 

and let YA$ be a solution to Y' = Ji Y ,  then 

is a solution to Y' = JY. Therefore, without loss of generality, we need only consider 
the case where 

4= 

It can then be shown that 
i ti 

7 yi(t; h) = exp ( A t )  
5=03 ' 

is a solution to Y' = 4 Y and that the yi are linearly independent. We therefore 
conclude that 

where P is an invertible matrix and YA = [ y j ( t ;  A ) ] ,  is the most general form of linearly 
independent functions that satisfy F; = ZCi5$ for some constants C,,. 
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